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Abstract. The first-rank tensor field coupled to an external electromagnetic field is reduced 
to a constrained mechanical model. By using the constrained mechanical model we trace 
the origin of both the non-positive definiteness of the commutators and the non-causal 
modes of propagation. We find that these diseases have a common origin inherent in the 
constrained dynamical systems. 

1. Introduction 

The occurrence of acausal propagation as well as indefiniteness of the anticommutator 
in various relativistic wave equations has been studied almost from the beginning of 
relativistic field theory [l]. These diseases are by no means confined to higher-spin 
fields [2]. Since the same indefinite factor is present in the anticommutator as well as 
in the characteristic determinant, it has been conjectured for some time that both 
diseases have a common origin that can be traced to the occurrence of constraints. In 
fact, it was found [3] that constraints can cause the c-number Hamiltonian for such 
theories to become non-local. In Diract terminology, this implies that the Lagrange- 
multiplier fields have non-local behaviour and that the constraint matrices may become 
singular [4]. We have now recognised that these diseases are inherent in constrained 
systems and can be traced to the invertibility condition [ 51. 

In this paper we study both a spin-0 and a spin-1 first-rank tensor field coupled to 
an electromagnetic field minimally, as well as directly, via Pauli terms. This theory 
can be reduced to a mechanical model with constraints and, by an appropriate choice 
of the Pauli term, can be made to display both the indefiniteness of the commutator 
as well as acausal propagation. Although indefiniteness of the commutator is not a 
defect, since it can always be remedied by interchanging annihilation and creation 
operators, the model allows us to show that both diseases have a common origin. 

2. The first-rank tensor field 

The Lagrange density for the first-rank tensor field of spin zero coupled to an elec- 
tromagnetic field can be written 

(2.1) 2 = 4*p  [ A,, ( D )  + A;?]C#J ” 

t Permanent address: Physics Department, Gifu University, Yanagido, Gifu 501-1 1, Japan 

0305-4470/87/176101+ 12$02.50 @ 1987 IOP Publishing Ltd 6101 



6102 

where 
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A F U ( D )  = - (a ID2+a,m2)gru-pID,D,  (2.2) 

A z )  = -ie( 1 - a p ) p I F P u .  (2.3) 

The term A:; is a ‘Pauli’ term and the minimal coupling has been introduced through 
the terms 

D, =a,  -ieA,. 

The parameters a,, a, and p1 are real. It is also useful to note that 

[D,, D,] = -ieF,, = -ie(d,A, -a,A,). 

We now split the vector field q5+ into its irreducible spin parts according to 

4:” = gia4u = 4, 
(b(o)=go,4u =&.  

Y =  d: m , ” d ” + ( d ~ c , ” ~ ” - ~ : I ? , ” d ” ) - ~ : r , ” ~ ” .  

In terms of this decomposition the Lagrangian becomes 

We have introduced the following notation: 

4,=(40, 4k)E($‘o’y 4(kl)) 
m,, = m,g,u m, = (1110, M k )  

with 

mo = a, +PI mk = a l .  

Furthermore, with this splitting we have 
-[,CO,, ;;Lo) , ( O . l l  

C,” = 1 A , C i l ’ l  

, - ( I  - aP)PlDI cm = -ieAomo E ( l . O ) =  

cil) = 

where 

ik  -ieAOal g,k * , i O . I )  = 
A -aPpl Dk 

The corresponding terms for I?,,, are given by 
?,, [ ,(a), c(l.o) ,-CO.lJ 

, - ( I  -a,)p,DI,. -CUPPI D, 

I 7 A 3 C::’l 
and 

,ip.” = c‘ 1.0) E 

The rWv terms are 
= [ R i o ) ,  RIl.oJ, R(0.l) R “ )  r,” - k 9 i k ]  

R‘O’= -a ,AD+a2m2-e2Aomo 
Ril.0) = 

Rio.,) = 

A D  = D, D, 

i ~ ~ P I [ ( ~ - ~ ~ ) A O D ~ + ~ P D , A O I  

k iePi[apAoDk+(1 -ap)DkAol 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

R = -[a,( AD + e’&) - a2 m2]gik + p , [  a p  Di Dk + ( 1 - aP)DkDi]. 

(2.20) 
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In this form the spin content of the fields as well as their canonical structure is 

We now define 
clearly exhibited in this decomposition. 

x = (a l+Pl) /az  (2.21) 

a, = p # 0. (2.22) 

where 

If we assume the existence of a Klein-Gordon divisor, then ,y can assume only 
one of two values (see appendix 1 for a detailed discussion): 

(0 )  x = o  with a ,  = p ,  p1 = - p  (2.23) 

( b )  x = 1  with a ,  = 0, p1 = p .  (2.24) 

Case ( a )  corresponds to a Proca field (spin-1) and 4, satisfies the Lorentz condition. 
Case ( b )  corresponds to 4, satisfying the Bianchi identity, describing a massive spin-0 
particle. In the next section we develop a mechanical model which reduces to the 
above special cases for particular choices of parameters. 

3. The mechanical model 

A mechanical model with 2( N + 1) degrees of freedom and the same constraint structure 
as the field theory discussed in the previous section is given by the Lagrangian 

L=~;m,”~”+(~~c,”4”-q5;~~”~”)-4;~,~q5”- v4; ,  4”). (3.1) 

We assume summation over repeated indices. Here b ; ,  q5v ( p ,  Y = 0,1,2, .  . . , N )  are 
the coordinates and the potential term V contains quadratic as well as higher-order 
terms in the coordinates. The ‘kinetic mass matrix’ nC,, as well as the matrix rFy  are 
both Hermitian. The matrix c,, is anti-Hermitian. 

Since the matrix m is Hermitian, it can always be diagonalised by a unitary 
transformation. We assume that this has been done and that 

me,> = m, 6,” (3.2) 

with no summation over the repeated index of the eigenvalue m, from now on. This 
eigenvalue is called the kinetic mass [6]. 

The potential term plays no role in the constraint structure and is therefore dropped 
from now on. Dropping the potential term V, the Lagrangian can be written [7] 

L =  m , ~ ; ~ , ” ~ , , + ( ~ ; c , ” 4 , , - 4 , ~ , ~ , ~ ” ) - b ; r , ” 4 , , .  (3.3) 

We now assume that the mass matrix is singular of rank r = N or 1 in order to 
analyse in detail the problem inherent in the constrained systems. The problem is to 
show that both the non-positive definiteness of the commutators and the non-causal 
modes of propagation originate from a lack of invertibility of the operators 0, defined 
by equations (3.14) and (3.36). By a suitable choice of the unitary transformation that 
diagonalised m we can arrange to have 

( a )  m, = O  f o r p = O  

m,#O for p = i = 1 , 2 , ,  . . , N 
(3.4) 
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for r = N and 

( b )  m,#O f o r p = O  

m, = O  f o r p  = i =  1 , 2 , .  . . , N 
( 3 . 5 )  

for r = 1 .  We adhere to this notation of letting, in both cases, Latin indices from the 
middle of the alphabet, namely i,j, k, . . . , run from 1 to N. 

m,& + d,”& + (C,” + r ,”)4“  = 0 

The Euler-Lagrange equations corresponding to the Lagrangian ( 3 . 3 )  are 

( 3 . 6 )  

( 3 . 7 )  &Emv - qbz d P u +  dz(-i,, ,+ r,“) = O  

dWy = cPy + C,”. 
where dPy is defined by 

( 3 . 8 )  

We are now ready to analyse the constraint system corresponding to the Lagrangian 
( 3 . 3 ) .  

3.1. Case ( a )  

The Euler-Lagrange equations ( 3 . 6 )  now split into equations of motion: 

m, & + d, ,& + (k  + r , u ) 4 u  = 0 ( 3 . 9 )  

and equations of constraint: 

d o v ~ , + ( C o Y + r o Y ) 4 Y = 0 .  ( 3 . 1 0 )  

Taking the time derivative of equation ( 3 . 1 0 ) ,  we obtain 

~ 0 0 ~ 0 + [ ~ 0 ” + ~ 0 , +  r o Y - d o l ( l / ~ ! ) d , . l &  

+ [ ( C O ” +  i o ” )  - d o z ( l / m l ) ( 4 ” +  rl”l14” = 0. ( 3 . 1 1 )  

Here we have substituted ( 3 . 9 )  into ( 3 . 1 1 ) .  
If coo # 0, equation ( 3 . 1 1 )  yields no more constraints and becomes the true equation 

of motion. This corresponds to the case where no secondary constraints appear in the 
Dirac formulation and no difficulties occur. Thus, we assume that 

coo = 0 ( 3 . 1 2 )  

from now on. 
Substituting the condition ( 3 . 1 2 )  back into ( 3 . 1 1 ) ,  we obtain 

OddO+ [CO, + + ‘0, - ( l /  m, )d~,ld, 
+ [ ( C O v  + i o , )  - d o , ( 1 / m l ) ( 4 u  + r l Y ) 1 4 ”  = 0. (3 .13)  

Here we have defined Od as 

Od r o o - d o t ( l / m , ) d , o .  ( 3 . 1 4 )  

It is important to notice that in ( 3 . 1 3 )  both do and 4, have the same order of time 
derivatives. 

Assuming the invertibility condition that 

Od # 0 (3 .15)  
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we obtain from (3 .9)  and (3.13) the true equations of motion: 

m, $ 1  + [ Mt k dk/ - di 0 0 ,  I ( + + rO/ 141 

+ [M,k ( k k v  + rkY) - dto 20” + i o ”  )14” = 0. 

Here we have introduced the operator M I L  defined by 

(3 .16)  

(3.18) 

Another true equation of motion comes from (3 .13)  by again taking the time 
derivative, and  the result turns out to be 

O d $ O +  d d  - ( l /  m8 )(-itO + rto) - [ ‘OJ + ‘0, - ( l /  m l  )d , , l (  l /  mJ ) d J o } d O  

+ { JOk + 2[ 2Ok + i O k  - 40 ,  ( 1 /  mr )dik - dot ( 1 / ) cizk 1 
- ( 1 /  m, ) ( - i l k  + r!l ) - [CO] + - ( 1 /  m c  ) d ~ l (  1 /  m ~ ) d ~ k } d k  

+ {( coy  + F O P )  - &, ( 1 / mi )( c,, + r , , )  - do, ( 1 /  m, ( 2,” + it”) 

- COJ + + ‘O/ - ( / dl/ 1 ( / “IJ ) ( ‘ J D  + ‘ JP  ) 1 4” (3.19) 

Thus, we have obtained the true equations of motion for the coordinates 4I and 
Here we have substituted (3 .9)  into (3.19) in the course of the derivation. 

4o (see equations (3.16) and (3 .19) ) .  

3.1.1. Propagation. The principal parts of the true equations of motion (3 .16)  and 
(3 .19)  become 

(3.20) 

(3.21) 

Returning to the actual field theory model for which this mechanical model is an  
analogue, the fields 4J have, by analogy, principal parts for the true equations of 
motion that are 

It is now possible to consider the normals n, to the characteristic surfaces by 

8, + n, (3.22) 
in the principal parts of the true equations of motion ( 3 . 2 0 ~ )  and ( 3 . 2 1 ~ ) .  If we now 
go to the specific frame 

(3.23) 

then the principal parts of both sets of equations of motion (field theory as well as 
mechanical model) (3 .20)  and (3 .21) ,  and ( 3 . 2 0 ~ )  and (3 .21a)  agree. Thus, in either 
case (for this particular frame) the characteristic determinant turns out to be 

replacing 

n, = ( n o ,  O , O ,  0 )  

(3.24) 
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3.1.2. Quantisation. If we assume that 
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roo # 0 
equation (3.10) yields 

40 = - r , -d[doJ 4, + (CO, + ro,) 4J 1 
= -r&’doJ4J +.  . . . (3.26) 

To obtain the kinetic-energy part of the Lagrangian (3.3) we substitute (3.26) back 
into it. The result turns out to be 

L = 1 T AV 1, + . . . 
where A, is given by 

Here AIJ is called the ‘effective mass’ [6]. 
&IJ = m ! ( &  -(1/m,)dIOriddOJ). 

Let T: be the canonical momenta conjugate to the coordinates 4,; then 
T,* = aL/adJ = ~ T J u , ~ .  

[cbt(x), T,*(Y)I =iS,,S‘3’(x-y) 

[41 (x ) ,  d;C(y)I = i 6 ’ 3 ’ ( ~ - ~ ) ( l / m l ) ~ , k .  

Assuming the usual equal time commutators for the field operators, 

we arrive at 

Here we have used the useful relationships 

AI, ( I /  mj )Mjk = ( I /  m,)MyA,k = a i k -  

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 
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3.2.1. Propagation. The characteristic determinant in the frame (3.23) becomes 

% ( n o ) a  n i (N+' 'mo  det Odl,. (3  -40) 

3.2.2. Quantisation. Assuming that 

# (3.41) 

we obtain 

4, ~ ~ r ~ ' ~ d J ~ & ~ ~ ~ c J ~ ~ r J ~ ~ ~ ~ ~  
= - r v  - 'dJo+o+ .  . . . (3.42) 

Substituting (3.42) back into the Lagrangian (3.3),  we obtain the kinetic-energy part: 

L =  &,*A&o+. . . (3.43) 

where the effective mass is given by 
- I  At= rno[l-(l/mo)doir,j djO].  

Assuming the usual equal time commutator that 

[+o(x), TO*(Y)I =i6'3 '(x-Y) 

[4o(x), &O*(Y)l =iS'3 ' (x-Y)( l lmo)M 

70" = aL/adO = &*A. 

we arrive at 

where 

Here we have used the relationships 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

A( l /m0)M = ( l / m o ) M A =  1 .  (3.48) 

We have applied the Hamiltonian formalism proposed by Takahashi [6,7]. The 
results we have obtained for the systems are equivalent to those of Dirac, who studied 
constrained Hamiltonian systems in general [9]. We underline the simplicity, generality 
and transparency of the above derivation. 

The invertibility conditions ( 3 . 1 5 )  and (3.39), namely 

Od # O  (3.49) 

are responsible for both the propagation and quantisation of the coordinates &. Thus 
we have arrived at the conclusion that the anomalies, if they happen, have a common 
origin inherent in the constraints of the systems. 

4. Conclusions 

The connection between the mechanical model and the field theory is complete if we 
replace the a,, in the mechanical model by gpu and, correspondingly, 1711, by -mk = -al .  
In this case the operators in the field theory corresponding to Od are 

( a )  Od = m 2  (4.1) 

( b )  Od8J = m 2 [ g , + i e ( l  - ~ ~ ) ( l / m ~ ) F , ~ l .  (4.2) 
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Here we have used the condition (A1.21) from appendix 1 .  If a p #  1 the invertibility 
condition may not be satisfied by O d y  since this matrix may become singular on a 
world sheet given by 

det o d ,  = - [ 1 - e 2 ( 1 - a p ) 2 ( 1 / m 4 ) ~ 2 ] = ~ .  (4.3) 

This creates all the difficulties discussed so far. 
If we let L:'y'(c = a, b )  be the coefficient matrix for the principal parts of the true 

equations of motion in cases ( a )  and ( b )  (see equations (A2.6) and (A2.7) of appendix 
2) we find (equations (A2.10) and (A2.11)) the following results in the frame n, = 
( n o ,  O,O,O): 

(4.4) 

(4.5) 

This shows that the operators Od are responsible for the non-causal modes of propaga- 
tion if they occur. 

Correspondingly, we find that the field commutators are given by 

[4: ' ) (x) ,  q3)"*(y)] = i6'3'(r-y)(g,, + D,O;'D,) 

Od = m2 

(4.6) 

where 

and 

[p(x), = i6 '3)(x-y)(1 + D,o;;,: 0,) for a p #  1 .  (4.7) 

Thus in either case the singularity of 0, is responsible for both difficulties, i.e. if o d  

can vanish it can change sign. 
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Appendix 1. Classification of the first-rank tensor field theories 

Consider a general massive tensor field 4 of rank one and let I be the identity operator 
so that 

4 = I& 

Let 

( A l . l )  

2= 4 * A ( a ) 4  (A1.2) 

be the assumed Lagrangian for such a free rank-one tensor field. The most general 
quadratic Lorentz covariant candidate for A(d) is 

.A,&) = - (ala2+ a2 m2)g,, - p , a ,  a, (A1.3) 
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where a , ,  a , ,  p1 are three real parameters. The most general candidate, of degree four 
in derivatives, for a Klein-Gordon divisor is 

m‘D,,(a) = (A ,a4+A,m2a’+  A ,  m4)gr,, + ( P # +  Pz m2)aw a,. (Al .4)  

where A ,  ( i  = 1 ,2 ,3 ) ,  P, ( j  = 1 , 2 )  are five real parameters. 

namely 
We now impose the condition that D ( a )  is the Klein-Gordon divisor for A(d), 

(A1.5) 

Writing out ( A l S ) ,  we obtain, after rather tedious but straightforward calculations, 
seven independent equations for the eight parameters in ‘\(a) and D(8) .  Next we solve 
these equations. Of the seven relationships, six are available for determining the five 
coefficients in the Klein-Gordon divisor. Of these, four are used to obtain the para- 
meters A ,  ( i  = 1 , 2 , 3 ) ,  and the remaining two are used to determine the parameters P, 
( j  = 1,2) .  The remaining one then becomes a consistency condition. The results turn 
out to be 

A(a)D(d)  = D ( a ) A ( a )  = - (a2+  m2)Z. 

A ,  = O  (A1.6) 

A2 = ( 1  - ai/p)( lip) ( a ,  = O o r p )  (A1.7) 

A ,  = l / p  (Al .8)  

PI = -x(1 -x) (Al.9) 

P2=[1  - ( I  -a , /P) l (1 /P) -x /P  ( A l .  10) 

where ,y is given by (2.20) and p is defined by 

p = a, # 0. ( A l . l l )  

Finally the consistency condition yields 

-px2( I -x )=0  

x=o ,  1 .  

0, = [ p ’  1 ’ )  p‘”’] 

P:: = g,, -a,  a-’a, 

P:; = a, a-‘a,. 

co;=z 

namely 

Let 0, ( I  = 1,2) be the spin projection operators: 

where 

These projection operators satisfy the relationships 

(A1.12) 

( A l .  13) 

( A l .  14) 

(A1.15) 

( A l .  16) 

( A l .  17) 

0, oj = 6,0, ( i , j  = 1 ,  2 ) .  ( A l .  18) 

It is convenient to rewrite the Klein-Gordon divisor in the form 

D,,(a) = - ( I  - ~ , / ~ ) 1 ( l / p ) ~ : ‘ ~ + x ( l / p ) ~ ~ ~ + ( l / m ‘ ) ( a ’ + m ~ ) ( 1  - a l / p ) ( l / p ) g , v .  
(A1.19) 
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Here the tilde means the replacement of the inverse D’Alembertian operators a-* with 
-m in the relevant quantity. In the Takahashi-Umezawa formulation [8], the 
Klein-Gordon divisor satisfies the idempotency condition: 

D D =  D. (Al.20) 

A Z Capri and M Kobayashi 

-, 

This yields 

p = l .  (Al.2 1) 

We now classify the first-rank tensor field theories in terms of the subsidiary 
conditions ,y = 0, 1. 

Al.1.  ,y = 0 

This corresponds to having the Lorentz condition satisfied by the field. 

A l . l . l .  a ,  = p ;  p ,  = -p. Pure spin-1: 
D = $ I ’  

-lPv = -(a2 + m2)g,,# +a, a,  = A $ .  

This is the famous Proca theory [lo].  

A1.1.2. a ,  = 0; p ,  = 0. Does not yield any theory: 

D = ( 1/ m 2 ) (  a2 -k m’) I 

A+,, = -m‘g P Y ‘  

A1.2. ,y = 1 

A1.2.1. a ,  =p; pI = 0. Mixed spin-1 and 0: 

D = I  

A,,, = - (a2+ m2)gP, . 
This case is reducible, since the reducibility condition 

0 , . 1 ( a ) 0 2 +  02.i(a)o, = o  
holds. 

(A1.22) 

(Al.23) 

(A1.24) 

(A1.25) 

(A1.26) 

(A1.27) 

(A1.28) 

A1.2.2. a ,  = 0; pI =p. Pure spin-0: 

D,” = P ~ ~ + + ( l / m ’ ) ( a ~ + m ’ ) g , , ,  (A1.29) 

,iPU = - m ‘ g  ,” -a, a, = A?. (Al.30) 

This corresponds to having the field satisfying the Bianchi identity. 
Thus, only two theories, A l . l . l  and A1.2.2, survive, as is to be expected. It is 

remarkable that there exists a reciprocal relationship [ 111: 

. i jf ; ,’( l /m2)A‘B’”.  = . l ~ ( l / m 2 ) A ’ L ’ P . =  -(d2+m2)g,,. (Al.3 1) 

This shows that the two operators A ‘ L )  and A‘B’  are, up  to a factor of l /m2 ,  each 
other’s Klein-Gordon divisor. Therefore there is a simple equivalence theorem between 
the Lorentz condition and the Bianchi identity, as has been discussed previously 
[ l l ,  121. 
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Appendix 2. The characteristic determinants 

The Euler-Lagrange equation of motion follows from equation (2.1), namely 

[A,, ( D )  + A:]4" = 0. (A2.1) 

Written out, this becomes 

[ A z (  D )  + A $)I 4' = { - ( D' + m2)g,, + g,, [ a ,DUDp + ( 1 - a ,) Dp D" ]gp , }  4' = 0 
(A2.2) 

[ A z (  D )  + A:Pd]4p = { - m2gPp -g,,[apD"Dp + ( 1 -  c~p)DpD~]g ' ,}c$~ = O .  (A2.3) 

Here we have used the conditions A l . l . l  for (A2.2) and the conditions A1.2.2 for 
(A2.3) together with (A1.23) as well as (3.6). 

Contracting (A2.2) with Dp, we obtain 

D,4, =ie(l/m')(F, ,D" -apD"F,,)4Y (A2.4) 

The Euler-Lagrange equation of motion (A2.3) yields 

D,4 dfi - Dfi4A = i e (  1 / m 2 ) [ F A p  O p  - ( (A2.5) 

In the limit that e tends to zero, equations (A2.4) and (A2.5) become the Lorentz 
condition and the Bianchi identity, respectively. 

The true equations of motion are obtained by substituting (A2.4) back into (A2.2) 
and by contracting (A2.5) with DA and using (A2.3). The results turn out to be 

[ - ( D' + m ')g,, + i e (  1 / m') D, ( F,, D" - a p  DOF,, ) + ( 1 - a ,)i e~ , , ]  4' = o (A2.6) 

[ -( D2 + m2)g,, + ie( 1/ m')[ D"F,, D,, - (1 - ap)(D2F, ,  - D*D, F o p ) ]  

- 
DA Fpp - D p  

+ apieF,,]c$P = 0. (A2.7) 

To find the normals n, to the characteristic surfaces, we replace 

a, + n, (A2.8) 

in the principal parts of the true equations of motion, equations (A2.6) and (A2.7), 
and calculate the determinant % ( n )  of the resulting coefficient matrix. Here %(n) is 
called the characteristic determinant. The results which we have obtained are 

%'"'( n )  = det LFi( n )  a = L a n d B  (A2.9) 

where 

L$(n) = -n'g,,, - ie(l /m')n,n"(l  + a p ) F u p  (A2.10) 

and 

LL:(n) = -n*g,,+ie(l/m')[n"F,,n,-(l -ap)(n2F,, -n"n,F,,)]. 

To avoid cumbersome computations we take the special frame 

(A2.11) 

", = ( n o ,  o,o,  0). (A2.12) 

This frame plays a crucial role for the true equations of motion in non-covariant form. 
A rather tedious computation of the determinants then yields 

%'L'(no) = (n;)* (A2.13) 

%'"(no) = ( n:)4[ 1 - e'( 1 - cyp)*( l / m 4 ) H 2 ]  (A2.14) 
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where H' = F23, H2 = F31 and H3 = F,?. In covariant form, equations (A2.13) and 
(A2.14) turn out to be 

~ + ~ ) ( r r )  = (n')" (A2.15) 

@ B ) (  r r )  = ( r ~ ' ) ~ [  n 2  + ( l/m4))e'( 1 - crp)'( nFd)'] (A2.16) 

where F:" is the dual field of Fpy and is defined by 

Fpy = 4 ~,,,p F"' 

with the convention = 1. 
The nature of propagation follows from the characteristic roots defined by 

U(n)=O. (A2.17) 

If we choose c y p =  1, then (A2.15) and (A2.16) yield 

P)(?I) = ( n 2 ) 4  = 0 for a = L and B. (A2.18) 

Thus, we have the roots np to be 

n o =  *In\. (A2.19) 

Since the roots are real and on the light cones, the equations of motion are hyperbolic 
and the propagation is causal. 

For the Proca field, the theory is independent of the Pauli term, while for the spin-0 
field we have to choose 

f f p =  1 (A2.20) 

otherwise non-causal modes of propagation arise in that theory. 
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